Friday, May 17, 2024

Electric drives improved in density, efficiency and reliability

“Motorettes” implemented to study the effects of high voltage gradients on the voltage distribution among windings
“Motorettes” implemented to study the effects of high voltage gradients on the voltage distribution among windings

RAISE European Project, coordinated by the group of Electrical Machines and Drives – MeltingLab of University of Modena and Reggio Emilia (UniMoRe), aims at offering solutions to improve the reliability of power converters, of machines and of the entire electric drive, without damaging their performance and efficiency. Benefits and ameliorations that are likely to exert positive repercussions in both the short and the long term, besides being exploited by manufacturers to face the competitive Asian market.

In recent years, the need of implementing increasingly powerful, light and efficient electric and electronic devices has become a priority target in all industrial sectors. For this reason, the release on the market of new wide bandgap based power devices, made of silicon carbide (SiC) and gallium nitride (GaN) semiconductor materials, has aroused lively interest in scientific and industrial communities.

Time trend of power devices’ power densities
Time trend of power devices’ power densities

Automotive and aerospace industries rank among those that can most benefit from these devices.
In this context, according to recent development trends focused on “More Electric Vehicle” (MEV) and “More Electric Aircraft” (MEA), the replacement of hydraulic/mechanical actuators with electric drives implies a neat improvement of efficiency and power density, which means also weight reduction, minor fuel consumption and lower emissions of noise and polluting substances.

The added-value of wide bandgap based power devices

The converters based on wide bandgap power devices feature superior characteristics than conventional devices based on silicon (Si). Such devices offer faster switchovers, minor power losses and they can operate at higher voltages and temperatures than their silicon counterparts, so allowing also a further reduction of volume and weight in converters’ cooling system.

Simplified scheme of an electric converter-cable-motor system.
Simplified scheme of an electric converter-cable-motor system

«It is then clear – explains Dr Stefano Nuzzo, member of the research team of UniMore, University of Modena and Reggio Emilia, “Electrical Converters, Machines and Drives”, together with Professor Davide Barater, Professor Giovanni Franceschini and Mr Marco Pastura – that the new devices based on SiC and GaN semiconductors materials perfectly match the above-mentioned targets».

Simplified scheme of an electric converter-cable-motor system
Simplified scheme of an electric converter-cable-motor system

However, the electric stress combined with the high voltage gradients they can reach, in addition to the combined action of other environmental stresses (like temperature, pressure and humidity) can shorten the life time of the insulation system of electric motors powered by converters that use SiC and GaN semiconductors.
Therefore, reliability problems can emerge in this type of electric drives. Moreover, the physical length of the power supply cables that connect the power converter to the motor can be comparable, or even exceed, the so-called “critical length”. «In this case – Dr Nuzzo underlines– the high rising and falling voltage pulses make cables behave like transmission lines, with waves that travel forward and backward along cables themselves due to the reflection phenomenon. These high-frequency phenomena can cause dangerous overvoltages at motor terminals, up to twice the direct-current bus voltage, the worst case, which can seriously damage the electric insulation of motor windings».

Prototype of the SiC converter used, with possibility of setting different levels of voltage gradients
Prototype of the SiC converter used, with possibility of setting different levels of voltage gradients.

In particular, if the values of the dielectric rigidity of insulations are exceeded because of voltage levels at electric motor terminals, conductive phenomena through a portion of the insulation material occur, leading to the so-called partial discharge phenomenon. Partial discharges occur on the surface of the electric insulation, causing a progressive erosion up to the complete breakdown. The critical length is proportional to the switchover time, therefore the very short switching times of SiC and GaN devices have made the cable use problematic even for an extension of few metres. Besides, electric power transmission networks currently proposed for aircrafts are addressing the use of higher and higher voltage levels on bus in direct current, to minimize conduction losses.

“Motorettes” implemented to study the effects of high voltage gradients on the voltage distribution among windings
“Motorettes” implemented to study the effects of high voltage gradients on the voltage distribution among windings

However, the voltage rise on bus in direct current causes a further stress on the stator winding insulation, thus worsening the issues connected with the use of wide bandgap based devices.

From the state-of-the-art to the progress beyond it

The project RAISE – “Reliable Aircraft electrical Insulation sElection” is framed in this context. The project, started in March 2018, is funded by Clean Sky consortium, the primary research programme on European scale, included in Horizon 2020 funding system, which aims at the development of innovative solutions for the reduction of CO2, of greenhouse gases and of the acoustic pollution. The group of Electrical Machines and Drives – MeltingLab of University of Modena and Reggio Emilia (UniMoRe), led by Professor Giovanni Franceschini, is coordinator of RAISE project and Professor Davide Barater is its Principal Investigator. Other two members of the MeltingLab assist their work in the project: Dr Stefano Nuzzo himself and Mr Marco Pastura. «MeltingLab – Dr Nuzzo specifies – collaborates with the main groups of the Department of Engineering “Enzo Ferrari”, of which it too is part, and cooperates with the most renowned area companies operating in the sectors of automotive, electric drives, industrial electronics and electrical machines».

Complete experimental bench: converter-cable-motor
Complete experimental bench: converter-cable-motor

In the last years, the group’s research has focused on electric mobility, mainly working on the design of electric drives for the control of high-performance electric motors through advanced prototypes of power converters with SiC modules, and on the design of electric machines featuring high efficiency and reliability.
Considering all criticalities previously highlighted, it is worth first of all assessing whether the insulating materials currently in use in electrical machines and in electronic power devices are suitable for applications that exploit higher and higher power supply voltages and switching gradients, such as in the case of the wide bandgap based semiconductors previously mentioned. Therefore, the first phase of RAISE project was committed to the analysis of the state-ofthe-art and to the experimental evaluation of insulation materials and systems used in in current aerospace applications. Afterwards, to better understand the impact of high voltage gradients, they have developed some models to quantitatively assess the values observed in a typical system composed by power converter, cable and electric machine, considering the typical operating conditions of the aerospace environment and the dependence on the alternating voltage (three-phase at 115 Vrms versus 230 Vrms).

Typical voltage distribution in the windings of an electric machine
Typical voltage distribution in the windings of an electric machine

The limit for the direct-current bus voltage was fixed at 1 kV, while the maximum voltage gradient considered is 20 kV/µs. Nevertheless, for these studies, they have considered also higher voltage and gradient levels, which might be reached in the next future. «These models – Dr Nuzzo specifies– can assess also the voltage distribution inside the windings of the electric machine and its dependence on the key parameters of the machine».

RAISE PROJECT (RELIABLE AIRCRAFT ELECTRICAL INSULATION SYSTEM SELECTION)
RAISE (Reliable aircraft electrical insulation system selection) is a 30-month project, receiving funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme. The consortium brings together two of the most prestigious Italian Universities: University of Modena and Reggio
(UniMoRe) and University of Bologna (UniBo). UniMore leads the consortium as project coordinator whereas the company LiebherrAerospace, multinational operating in the aerospace sector, acts as Topic Manager for the project. RAISE aims at investigating and assessing partial discharges and breakdowns of electric insulation in electrical machines’ windings driven by wide bandgap converters of silicon carbide (SiC) and gallium nitride (GaN). Goal of the project is offering solutions to improve the reliability of power converters, of machines and of the whole electric drive, without damaging performance and efficiency. Consequently, the aircraft of the future, besides being “more electric”, will be more reliable, more compact and lighter, and fuel consumptions and the environmental impact, mainly measured on CO2 emissions, will be drastically reduced. It will be possible to transfer conceptually and practically the results of the project to the automotive industry, where the same electrification trend is taking place.
To demonstrate the validity and the accuracy of these models and to customize simulation parameters, they have built some “motorettes” representing senting a typical stator slot, suitably wound. Afterwards, they have also built some samples of electric motors, on which they have carried out some specific experimental tests. The experimental bench represents a typical converter-cable-motor system, with which it is possible to set up different levels of direct-current bus voltage and of voltage gradients, eventually exceeding, where required, the maximum pre-established of 20 kV/µs.

Innovative methodologies to reduce high voltage gradients

The project subjected to in-depth study is also aimed at verifying when the partial discharge phenomenon on insulation systems starts. «In this second phase, – Dr Nuzzo highlights – we developed some models based on the estimation of components’ life time and we carried out some experimental tests aimed at studying the impact of the voltage variation speed on partial discharges.

Research team of UniMore, MeltingLab of University of Modena and Reggio Emilia, “Electrical Converters, Machines and Drives”, (from the left): Professor Giovanni Franceschini, Mr Marco Pastura, Professor Barater, Dr Stefano Nuzzo
Research team of UniMore, MeltingLab of University of Modena and Reggio Emilia, “Electrical Converters, Machines and Drives”, (from the left): Professor Giovanni Franceschini, Mr Marco Pastura, Professor Barater, Dr Stefano Nuzzo

The investigation was executed considering also the variations of environmental conditions in terms of temperature, humidity and pressure».
The final goal consists in making the developed models represent some guidelines for the detail design of components “free” from partial discharges, through the estimation of the service life of insulation systems. The capability of designing insulation systems free from partial discharges will allow then granting the reliability of all the components of the electric system at stake and consequently of the entire aircraft.

AUTO-MEA PROJECT (AUTOmated Manufactoring of wound components for next generation Electrical Machines)
The final project phase, whose activities will be performed during 2020 and will go on until the end of the project planned by October 2020, will consist in the study and in the development of innovative methodologies for the reduction of the high voltage gradients iat the machine input terminals, without damaging the demanded efficiency and power density requirements.The results of this project – Dr Nuzzo specifies– will allow using power converters based on wide bandgap SiC and GaN semiconductor materials on board of aircrafts. Such converters will be characterized by high power densities and, as direct consequence, we will achieve a substantial reduction of the weight of the aircraft itself, of the fuel consumption and of its environmental impact». The outcomes of the project itself will be used by designers of motors and electric drives to test solutions and to adopt precautions before the implementation of physical prototypes.Since November 2019, UniMoRe has been also the coordinator of the European project AUTO-MEA (AUTOmated Manufacturing of wound components for next generation Electrical machines). The target of the initiative, included in Clean Sky 2 European Research Programme, is the development of new methodologies for the manufacturing of wound components of electric motors to be used in the aerospace field. AUTO-MEA consortium, in addition to UniMoRe, is composed by CopperING srl, reference company in the production of manufacturing lines for electrical machines’ stators in automotive fi ld, and by the University of Nottingham, which acts also as project Topic Manager. The replacement of pneumatic and hydraulic actuators with electric drives standing out for compactness and reliability represents one of the most promising trends nowadays but it needs innovative solutions for the design of electrical machines. AUTO-MEA will focus on the typology of preformed “hairpin” windings that, even providing numerous advantages compared to “random” windings at low frequencies (such as higher reliability and power density), reduce electrical machines’ efficiency at high frequencies. The project is aimed at pushing the boundaries of hairpin windings’ operational frequencies. The results by AUTO-MEA will have relevant repercussions also in other sectors, especially in the automotive industry where the Emilia territory is protagonist on a world scale.
This will improve the reliability of the electric drive and of the whole aircraft, which has always been one of the limiting factors in MEA context. «We expect – Dr Nuzzo concludes– such improvements will exert positive repercussions in both the short and long term and they can be exploited by European electric drive manufacturers to face the Asian market and then to be more competitive on a world scale».
(by Gianandrea Mazzola)

The vibro-acoustic analysis in electric motors

Spin Applicazioni Magnetiche

The vibro-acoustic analysis is fundamental in the sizing of any mechanical component. Not only because vibrations produce both mechanical and noise effects but also because the mechanical motion can generate stress and/or undesired dynamic behaviour of the system. Besides, the induced stress is correlated to fatigue and can cause premature breakages of the device. The fatigue failure depends on the number of cycles: even if the stress level is by far inferior to the maximum tensile stress of the component, at the end a failure can occur. With the rise of the power density of electric motors and more ad more demanding specifications, the vibration forecast in the initial design phase has then become a very important matter. An operational ambit where is protagonist Spin Applicazioni Magnetiche, service company working in the sector of electromechanical device design and distribution of simulation programmes for electromagnetic devices, electric motors, mechanical analysis and control systems. «In many industrial applications – Alessandro Tassi, CEO of Spin Applicazioni Magnetiche, explains – low vibration/noise levels are demanded: from the automotive industry to household appliances, from the diversified HVAC to the variegated power tools. The comfort of end users is as fundamental as the failure prevention».

The added-value of the multi-disciplinary analysis

Forefront Finite Element calculation instruments (Fem) allow an assessment of the behaviour of an electromechanical device since the first design stages, avoiding corrective actions when it is difficult to modify already advanced design choices, unless with cost increases and with an extension of the product time to market. Spin Applicazioni Magnetiche holds the expertise to guide accurate multi-disciplinary analyses on such theme.

Spin Torque-power performances
Torque-power performances of the motor for automotive

«From the electromagnetic context of the Fem calculation – Tassi underlines – we extrapolate the electromagnetic forcings and, through a dedicated connection, we evaluate, in the mechanical context of finite elements, the iterations with the mechanical structure equipped with the motor, allowing the determination of the real displacement of all parts, and eventually analysing noise radiation aspects». The company can boast multi-year experience in such applications, both through dedicated consulting in home-appliance field and in automotive sector.

Electromagnetic and vibrational FEA analysis
Electromagnetic and vibrational FEA analysis

As confirmed by the numerous assignments entrusted for the management of entire projects, from the initial design to the implementation of very performing prototypes, where the vibro-acoustic analysis has been the key element of the project.

High power density at the service of automotive

The development of a traction motor for sports cars is an example of the above- mentioned workflow. Spin Applicazioni Magnetiche, from simple inputs of power (120 kW) and speed (30,000 rpm) and maximum footprint, has guided the customer to the implementation of prototypes. «The motor design –Tassi further explains – started from the typical white sheet, with electromagnetic and mechanical optimization as elements that have guided the device development since the beginning. The electromagnetic forcings calculated have become the input for mechanical analyses; the motor structure has been optimized to reduce vibrations, stator and rotor laminations, magnets, the frame and the shields were subjected to a single vibro-acoustic optimization».

In comparison with the first hypothesized design of the automotive motor featuring 120 kW of power and 30,000 rpm, the team of Spin Applicazioni Magnetiche has succeeded in notably reducing acceleration peaks

Such approach has allowed notably reducing some acceleration peaks, up to 94% versus the first hypothesized design, the thermal analysis has concluded the design course, providing this brushless motor with remarkable performances in a volume slightly under three litres. «Through this calculation method –Tassi confirms – prototypes were validated and, without turning to design modifications, we could immediately proceed to the implementation of samples for the approvals needed for the mass production. All that with notable decrease of design times and costs».

High efficiency and low noise at the service of the home appliance

The same multi-disciplinary operational methodology was applied in another successful case, for the testing of household appliance motors for which, besides efficiency, also the noise becomes a key issue that makes the difference in the product. «The electromagnetic and mechanical model of a high-speed motor for household appliances –Tassi highlights – has given excellent results of correlation with experimental measurements, too, allowing the customer to understand how to act in the reduction of accelerations in determinate harmonics that generated resonance phenomena with the entire application where the motor itself was mounted».

VIBRATION, THIS (UN)KNOWN
The vibration term specifically refers to a mechanical oscillation around a point of balance. The oscillation can be periodical, like the motion of a pendulum, or random, like the motion of a tire on an asphalt road; the frequency measurement unit for periodical oscillations is the Hertz that corresponds to how many times, in a second, the same configuration occurs again.
In many cases, vibrations can represent a wished phenomenon: for instance, in the operation of the diapason and of many musical instruments. However, more often vibrations are not welcome as they can disperse energy and create unwanted sounds and noises. For instance, in the running of cars and motors in general. The studies concerning the sound and the various vibrations are strictly connected. Sounds, pressure waves, are generated by vibrating structures (for instance vocal cords) and pressure waves can generate structure vibration. Therefore, when we try to decrease noise, the issue is reducing the vibration that causes it.

This has permitted to act on the source of the problem, to optimize it and to avoid a long empiric approach to find scarcely flexible and expensive stopgap solutions. It is perfectly clear how the vibro-acoustic multi-disciplinary simulation approach must become a standard workflow for each designer of rotating electrical machines, so avoiding unpleasant surprises during prototype tests. «Spin Applicazioni Magnetiche –Tassi ends – can support its customers both through the supply of specific software and through targeted know-how supported by a long-term experience gained by our skilled team on such fundamental theme».

Alessandro Tassi, CEO Spin Applicazioni Magnetiche
Alessandro Tassi, CEO Spin Applicazioni Magnetiche
THE COMPANY IN BRIEF
Spin Applicazioni Magnetiche is a service company operating in the design of electromechanical devices and the distribution of simulation programmes for electromagnetic devices, electric motors, mechanical analysis and control systems. It pays particular attention to users’ requirements via software customization, creation of prototypes and magnetic measurements.
Spin Applicazioni Magnetiche is also distributor of highly professional calculation software, benchmark in the simulation field for many engineering disciplines, i.e. a very broad range of available programmes that cover all design aspects. The decennial knowhow gained in electromagnetic simulation is completed by expertise in structural mechanical analysis, multi-body, thermal analysis, fluiddynamics (Cfd), mechatronics and all that is typically included in the multiphysics design sphere. In addition,
Spin Applicazioni Magnetiche is also enabled to the training and use of calculation programmes; it supplies technical- scientific consulting, support in the development of new designs and it can take care of complete projects from the initial idea to the production of prototypes and manufacturing technologies.
(By Gianandrea Mazzola)

Business platforms and electric motors manufacturing processes

Pixel Y GammeXYT
Pixel Y GammeXYT

What, in the middle of the alert state of the first months of the current 2020, proved to be useful to the health sector – open shared innovation, the contribution of “brains” distributed in several continents, the development of the additive manufacturing and the fast shift from ideation to creation – is and will be precious elsewhere, too.
For instance, in the ambit of R&D concerning electric motors.
As witnessed by the case of the small producer of French electric cars, XYT, which has become part of 3DExperience Lab network of Dassault Systèmes to benefit from functions in cloud modality.
According to the data highlighting that the average motorist travels in Europe on distances largely under 100 kilometres daily, the goal was proving that interesting market shares still exist for EV, in short-range mobility, too.

Pixel Y, the modular vehicle

The idea, based on a concept structure called Pixel Y, was giving birth to a modular vehicle whose 580 parts (against the around 10,000 of a standard car) can be assembled several times at will and according to the requirements «with a normal toolbox».
Tested for the mileage of one million kilometres overall and optimized for urban deliveries, the model was the founder of a family extended to Pixel X, dedicated to logistics, and about to include Pixel T seven-seat shuttle, too.
«XYT», Dassault Systèmes informed, «has become part of 3DExperience Lab to have access to the 3DExperience platform in cloud to accelerate its mission. The company is ready to collaborate with local and global talents in all fields: from design to engineering, from supplies to customizations. Our software solutions allow the company to carry out configurations and customizations dynamically and quickly, starting from the typical modular architecture of XYT».
The partnership with the network of Labs provides for the unified access to Mobility Development Kits by XYT and the respective open innovation contents, besides the management of a fabric of workshops (they have planned 1,000) and relative operations of work planning, delivery and assembling.

The rhythm of batteries

Wherever there is an electric car, we need a smart, fast and green recharge system. SparkCharge, established in 2014, has added portability features to these characteristics.
Its compact batteries, for whose development it is establishing partnerships energy providers, assure an additional autonomy of one mile per each minute of connection to the network to electric vehicles. In other words, in just ten-twenty minutes the driver of an EV broken down can recover, with all probability, the sufficient energy to return home, at least, safely. To guarantee the compatibility of the accumulator with the broadest possible number of vehicles, the company has exploited the 3DExperience platform and, especially in design phase, on Solidworks. Catia 3D has been used mainly in the passage phase to rapid prototyping while Netvibes Intelligence allows aggregating contents from various online sources, socials included, to orient future industrial developments according to users’ comments.

Only electric forklift trucks in Sofidel Group factories from now onwards

With a record acceleration, a maximum travel speed of 21 km/h and further improved lifting speed and height, the new electric RX 60 25/35 forklift trucks by STILL combine the agility, the acceleration, the dynamism and the prompt braking of electric forklift trucks with the high-performances that in the past only diesel or LPG forklift trucks could assure. Due to these characteristics, RX 60 25/35 are suitable for applications in various sectors, like logistic, food & beverage and mechanical industry, offering notable use versatility: from loading and unloading operations of lorries to the horizontal transport of load units, from the stacking in shelves with maximum height of 7390 mm to commissioning and good preparation operations.
As perfectly knows Sofidel Group, world top player in the production of tissue paper for hygienic and domestic use, which has decided replacing all thermal forklift trucks in operation in its production sites and warehouses with electric forklift trucks.
Today, in Italy Sofidel can rely on a fleet composed by over 160 STILL forklift trucks– prevailingly electric frontal RX 20 and RX 60 – which are used for all activities, from the handling of raw materials to the finished product stocking in warehouse and the loading on lorries. To meet the specific requirements of the paper industry, most forklift trucks are provided with special equipment, like the grippers studied to handle cellulose bales or paper rolls. Moreover, 2 of them have been recently equipped with innovative traceability systems aimed at assuring the highest safety of the work environment and at optimizing the allocation of pallets and the courses travelled by means. Equipped with detection antenna and forefront Tag RFID reading systems, they have become an essential component of the IREAD4.0 system implemented by Sofidel for the monitoring and the automatic management of goods and forklifts trucks.

ABB excellence plant is starting up

They have started the construction works of the new plant at San Giovanni Valdarno, Arezzo, operational since the end of 2021. The structure will act as global excellence centre and manufacturing site for the entire range of recharge systems for direct current (DC) electric vehicles by ABB, from those for domestic use to those for installation in public areas and for urban public transport. A further growth for ABB in the electric mobility ambit, which uses household technologies. The factory will be in fact characterized by the integration of digital solutions by ABB AbilityTM that will allow complete visibility and the optimization of the production of each single product, making warehouse automated management systems interconnected with factory departments.

R&D activities will be carried out in a dedicated space, taking up 3,200 square metres, for development and prototyping. They will focus on the implementation of innovative solutions, new software and management instruments of the product lifecycle to integrate fully R&D activities with manufacturing activities, both in-house and with external electronic production services.

Meanwhile, the integration of renewable energy sources, like solar panels on the roof, an optimized heating and conditioning system and the introduction of a fleet of electric vehicles for workers, logistics, sales and service teams will contribute in reducing the environmental impact of the structure.

 

Fast photovoltaic recharge for electric vehicles

Produktion der SMA EV Charger. Foto: Heiko Meyer

SMA, one of the top players in the field of system technologies for photovoltaic, has developed and made available the EV Charger platform, a solution to recharge electric vehicles by exploiting the photovoltaic current generated through solar energy. The system is directly integrated into the renewable energy plant, simplifying installation and maintenance processes.

SMA EV Charger allows recharging quickly, safely and conveniently thanks to its different functions, constantly aimed at the highest possible exploitation of the available solar energy. Through the combination of photovoltaic and net current, SMA EV Charger can operate at 7.4 kW, then with almost double speed compared to standard wallboxes and even ten-time faster than a typical domestic socket. Moreover, the protection against power outages safeguards the domestic connection from overloads.

The recharge process with SMA EV Charger can be planned with the app SMA Energy Sunny Home Manager 2.0, which programmes the recharge in the domestic energy management, taking other loads into account smartly, allowing the cost reduction and assuring the vehicle availability at the wished start time.

«The electric mobility becomes a really smart choice only with the solar energy. For this reason–Nick Morbach, Executive Vice President of the Home & Business Solutions unit of SMA, stated- we have developed SMA EV Charger. This device allows drivers of electric cars to carry out the recharge always comfortably and safely, exploiting the convenient photovoltaic current, with zero climatic impact, as much as possible. All SMA devices, provided by the same supplier, dialogue one another and therefore have a single reference partner for whatever question about extensions, warranties or service.

 

Good news about fast recharge

State-of-the-art columns for fast recharge, developed by Nidec ASI are ready. Some days ago, the Italian company delivered the University Federico II in Naples the first Ultra Fast Charger column for electric cars that minimizes the impact on the electric net, a test aimed at assessing the technology validity for the widespread diffusion on the territory under various conditions, also in compatibility with photovoltaic systems.

The Ultra Fast Charger is entrusted with the task of simplifying and speeding up the electrification process of infrastructures and of decreasing operational costs to recharge electric vehicles: the presence of 160 kWh internal batteries allows not drawing directly from the network, so avoiding power peaks and consequent blackouts. Despite an energy requirement of just 50 kW, it allows supplying the vehicle with 320 kW power, achieving 80% of the capacity in less than 15 minutes.

Electric Motors Efficiency needs better copper

A new manufacturing process yields highest conductivity copper composites at bulk scale. This is a discovery of researchers at Pacific Northwest National Laboratory (PNNL): they have increased the conductivity of copper wire by about five percent. Higher conductivity means that less copper is needed for the same efficiency, which can reduce the weight and volume of various components that are expected to power our future electric vehicles.

The laboratory teamed with General Motors to test out the souped-up copper wire for use in vehicle motor components. As part of a cost-shared research project, the team validated the increased conductivity and found that it also has higher ductility-the ability to stretch farther before it breaks. In other physical properties, it behaved just like regular copper so it can be welded and subjected to other mechanical stresses with no degradation of performance. This means that no specialized manufacturing methods are necessary to assemble motors-only the new advanced PNNL copper composite.

The technology can apply to any industry that uses copper to move electrical energy, including power transmission, electronics, wireless chargers, electric motors, generators, under-sea cables, and batteries.

General Motors Research and Development engineers verified the higher conductivity copper wire can be welded, brazed, and formed in exactly the same way as conventional copper wire. This indicates seamless integration with existing motor manufacturing processes.

«To further lightweight motors, advances in materials is the new paradigm – said Darrell Herling of PNNL’s Energy Processes and Materials Division. Higher conductivity copper could be a disruptive approach to lightweighting and/or increasing efficiency for any electric motor or wireless vehicle charging sytem».

Volvo invests in a new laboratory in Shanghai

Volvo Electric Site to provide model for sustainable construction in China

To design and to manufacture in-house electric motors for the next car generation, Volvo Cars has inaugurated in Shanghai, in China, a new laboratory precisely dedicated to electric propulsion systems. This structure, in operation since last month, joins the unit that constantly develops electric motors in Gothenburg, Sweden, and modern laboratories for batteries in China and Sweden.

«Through in-house design and development processes, we will be able to perfect our electric motors, reaching higher and higher qualitative levels. Constantly ameliorating the overall performance levels of propulsion systems in terms of energy efficiency and comfort, we create an electric drive experience that exclusively identifies Volvo brand» – stated Henrik Green, Chief Technology Officer of Volvo Cars.

The laboratory activity will focus on the development of electric motors for applications in purely electric and hybrid cars based on the modular architecture for SPA 2 vehicles. The future of the brand is well outlined: the target is rising to 50% the share of fully electric models out of the total of global sales by 2025, with the remaining part constituted by hybrid models.

Electric motors for a total propulsion power of 178 megawatts

The multinational ABB will supply the Italian manufacturer Fincantieri with a complete range of electric motors and of power systems for five cruise ships that will start operating astride 2023 and 2026. It is a job order amounting to 150 million dollars.
The contract propulsion systems are Azipod, systems that can reduce the fuel consumption by 20% versus standard motors, although the necessary electric energy to power them is anyway produced through combustion.
Each ship will be equipped with two twin Azipod units, so bringing the total propulsion power ordered for the new five constructions to 178 megawatts.
With the electric motor mounted in a submerged capsule outside the ship hull, Azipod system can rotate by 360 degrees, significantly increasing the operational manoeuvrability and efficiency of a ship and precisely reducing the fuel consumption by even 20% compared to standard systems.