Friday, April 26, 2024

An electric compact motor without magnets and rare earths

“This advanced variant of a separately excited synchronous motor is thus an alternative to permanent-magnet synchronous machines (PSM)” ZF explains in a recent press release. The novelty is a separately excited I 2 SM synchronous motor by ZF that transmits the energy for the magnetic field through an inductive exciter inside the rotor shaft. This makes the motor extraordinarily compact with the maximum power and torque density.
PSM machines are currently the most used motors in electric vehicles but they are based on magnets that need rare earth materials for their production. With I2SM, ZF establishes a new standard to make electric motors extremely sustainable in production and highly powerful and efficient in operation.
Dr. Holger Klein, CEO of ZF said: “With this magnet-free e-motor without rare earth materials, we have another innovation with which we are consistently improving our electric drive portfolio to create even more sustainable, efficient and resource-saving mobility. This is our guiding principle for all new products. And we currently see no competitor that masters this technology as well as ZF.”
Compared to common SESM systems, the inductive exciter can reduce losses for the energy transmission into the rotor by 15 percent. In addition, the CO2 footprint in production, which arises with PSM e-motors in particular due to magnets including rare earth materials, can be reduced by up to 50 percent.

New smart mechatronic actuators for electric vehicles

In a scenario where we expect that the cars of the future will include more than 100 actuators with different functions, Marelli releases its new range of smart multifunction mechatronic actuators intended for electric vehicles, designed to simplify the actuation of complex functions.
The new actuators include an electronic module, which autonomously controls the actuator itself and connects it with the electronic net of the vehicle. The device features a flexible, modular and scalable mechanical design, able to suit complex configurations of the vehicle concerning electronics and transmission, and a software management designed to simplify the integration. Spotlights are then cast on the transmission of hybrid and full electric vehicles that find application in several systems

Bosch kit for the electrification of boats

Bosch Engineering, subsidiary of Bosch Group that offers complete engineering services, from the initial study to the mass production, presents its first electrification kit for the boats under 24 metres of length. The kit is composed by three key components: control unit, 400 V electric motor and inverter with integrated DC/DC converter (INVCON).

The design of Bosch synchronous permanent magnet high-speed 400 V motor grants high power density and efficiency. Moreover, the motor can be supplied with two power variants: one with maximum peak of 90 Kw and a weight of 30 Kg, the other with maximum power of 140 Kw and a weight of 63 Kg. Due to its compactness, the two versions can be easily housed in already existing systems, too.

The inverter with integrated DC/DC converter, with a maximum power of 140 Kw, generates three-phase alternating current with variable frequency starting from the direct current of the battery, while it works in reverse in the recovery phase, when it acts as generator. Due to its small sizes, it is extremely compact and easily integrated into the boat.

Gianfranco Fenocchio, General Manager Bosch Engineering Italia, stated: «The nautical industry and the sea economy in general stake on sustainability and innovation, issues cared by Bosch Group. The electrification of boats represents the most important step to allow the sector to pursue the sustainability way. For this reason, starting from Bosch’s great tradition in the automotive and off-highway sectors, we are going to provide technological solutions in the boating sector, too».

Magnetism under control

Italy, Europe, USA and China: the first sixty years of growth of Laboratorio Elettrofisico, specialized in the design, development and manufacturing of magnetizing systems and magnetic measuring equipment, integrated with automation.

by Luca Melideo

The research on magnetism, the study of materials’ magnetic properties, the possibility of measuring and controlling them accurately are the foundations of the design of common use objects, like household appliances and cars. They are also the focus of Laboratorio Elettrofisico, an Italian company that in its first sixty years of history has contributed in the ideation of more and more performing products used in all industrial sectors and in research.

When it was established in 1959 at Nerviano, in the outskirts of Milan where its headquarters are still located today, the partners of Laboratorio Elettrofisico were the Italian market and its business realities: for them and for their demands, it specialized in the production of magnetizing systems and measuring equipment of materials’ magnetic properties, with constant investments in technology and human resources. Investments that the market immediately acknowledged and awarded: in the Eighties, with a doubled number of employees compared to the beginning, Laboratorio Elettrofisico was ready to create synergies with primary companies, extending its presence in Europe and becoming in a short time a key supplier for major companies in the automotive, aerospace and consumer electronics sectors.

 

2000 is the year of the first branch in the United States, with the office in Philadelphia, today in Lake Orion, Michigan, to take care of USA customers but already glancing at Asia, where the magnet industry has always been very lively and dynamic. The agreements established with partners in Taiwan and China represent the bases for the setup of LE China some years later and the opening of the first office in China.

2007 is a key year for Laboratorio Elettrofisico, due to the takeover of Walker LDJ Scientific, which adds – to the already rich heritage of the company  – over 100 years of technical and engineering expertise and further accelerates a growth course which sees the establishment in succession of new offices in China, in Beijing and Shanghai, and in the United States, close to the Silicon Valley, in addition to the historical office in Michigan, real strategic site for the company.

In 2019, Laboratorio Elettrofisico celebrates its sixty years of successes witnessed by references of international companies that have made innovation their strong point, offices in Europe, Asia and United States and a team of experts in the magnetic sector. Backed by these results, the company looks at next targets with great motivation, to follow the traced course.

Interchangeable batteries? Teaming up for the electric propulsion

In the context of the Paris Agreement on Climate and of the transition towards the electric mobility, three big players have signed a Memorandum of Understanding for the establishment of a Consortium of Interchangeable Batteries for motorcycles and light electric vehicles. They are Honda, KTM, Piaggio and Yamaha Motor, convinced that a standardized system of interchangeable batteries will enhance the broad use of light electric vehicles and will share in the management of a more sustainable lifecycle management of the batteries used in the transport sector.
The goal of the Consortium, which will start its activities in May 2021, will consist in defining the standardized technical specifications of the interchangeable battery system for vehicles belonging to the “L” category; mopeds, motorcycles, tricycles and quadricycles. The 4 founder members of the Consortium, working with all concerned companies and national, European and international standardization bodies, will be involved in the definition of international technical standards.
“The global electrification effort to reduce CO2 emissions on a planetary scale – declared Noriaki Abe | Managing Officer, Motorcycle Operations, Honda Motor Co., Ltd – is in acceleration phase, especially in Europe. For the widespread adoption of electric motorcycles, problems like the transfer distance and recharge times, must be taken into account, and interchangeable batteries are a promising solution».

WEG, preventive and predictive maintenance

Released on the market by WEG, the device enables electric motors to play a protagonist role in the Industry 4.0 ambit. A technological solution that allows minimizing, or even eliminating, machine downtimes and remarkably improving the manufacturing process efficiency.

Gianandrea Mazzola

Motors are always subjected to strong stresses and long operation hours and it is unavoidable they are affected by a certain wear level. However, they unfrequently break down without warning. Usually, the signs of an imminent failure are anticipated by an increase of vibrations and by the high temperature. Parameters that, if not controlled and supervised carefully, can lead to unexpected stops, plant downtimes and therefore undesired financial losses. Consequently, the constant monitoring of vibrations, of temperature and of operation time becomes decisive as well as necessary to the ends of higher competitive edge. The timely warning of potential problems allows in fact executing the due maintenance and repair interventions, thus avoiding unscheduled interruptions. Definitively, a constant monitoring can increase productivity, improve quality and rise profits. Precisely in this context, WEG, one of the major world manufacturers of cutting-edge motors and drives, presented Motor Scan.

«We are referring to a user-friendly and effective device – explains Fabrizio Arosio, automation business manager of WEG Italia – that allows the remote monitoring of WEG motors, in order to maximise the use time and to permit both preventive and predictive maintenance activities». This technology allows in fact maintenance technicians to take informed decisions about the «health state» of installed motors and to react consequently, according to the acquired data.

From the motor to the IIoT, from Big Data to higher competitive edge

Available for frame sizes from 100 to 450, the device by WEG grants immediate usability. It exploits the Industry 4.0 digital technology, which includes Industrial Internet of Things (IIoT) and Big Data Analytics to offer its customers a competitive edge in this dynamic and complex activity sector. Due to its devising and development, the device aims at avoiding the boring manual collection and monitoring of data, at removing the conjectures about preventive maintenance and at eliminating the inefficiency of the reactive maintenance.

The company in short
WEG is one of the major world manufacturers of electric equipment, with five main Business Units: Motors, Energy, Transmission and Distribution, Automation and Coatings. The company employs around 30,000 people and over 3,000 engineers worldwide, with a global sale turnover amounting to 9.5 billion R$ in 2017. Its solutions in the field of the energy generation, transmission and distribution allow companies working in several sectors (in particular in the field of oil & gas, water & wastewater, energy distribution and in the chemical and petrochemical sectors), to operate more efficiently and to decrease the energy consumption, the emissions of carbon dioxide and the environmental impact. Besides, WEG offers complete solutions for projects in the renewable energy ambit, through complete systems of wind turbines and photovoltaic systems.
Fabrizio Arosio, automation business manager of WEG Italia

«Motor Scan – adds Arosio – can predict and highlight a problem before it occurs. In a certain sense, it is as if we had a sort of crystal ball that allows knowing what will happen in the future. We believe that, preventing a problem before it occurs is the attainment of the best efficiency in terms of cost and maintenance. The device exploits the IIoT and the analysis to connect sensors and other devices aimed at collecting and analysing data in real time and besides it offers transparency in the adoption of immediate preventive actions. Moreover, our new solution helps customers in increasing the safety of their plants, remaining anyway competitive in this demanding constantly evolving sector». The sensor can be easily installed (even in a time following the motor installation) through a clamp and today it can detect vibrations, surface temperature, operation hours, speed and start/stop through a Bluetooth connection. For practical reasons, the collected data are stored in the cloud and users can exploit an available app for both iOS and Android, on their smartphones or tablets, to gain access to it. Besides, the access to data on laptop and desktop is enabled by a dedicated Web portal. A powerful analysis system allows processing data and anticipating possible hidden anomalies or problems according to the analysis of the frequency spectrum. Various warning levels, according to acceptable reference values of temperature/vibration, are pre-set, with the possibility of tracing performance curves on the basis of the collected data.

WEG Motor Scan collected data are stored in the cloud and can be browsed through an available app for both iOS and Android, or from laptop and desktop through a dedicated Website

The added-value of a correct sizing

«Actually – adds Arosio – simultaneously with the installation, through the input of the univocal identification code of the single motor, the device automatically recognizes dozens and dozens of further product information, from the number of coils to their type of winding. Data that, through apposite algorithms, in the future will also enable, besides other things, to control the frequency, the efficiency and the real absorption in real time of the motor».
Moreover, these data will permit to check the correct motor sizing depending on the specific application. With noteworthy saving benefits.

«In fact, it quite often happens – further highlights Arosio – that starting from the designer’s initial sizing, to comply with the regulatory tolerances and so on, you achieve a motor used not by 100% but with much lower efficiencies. In other words, motors might be oversized or also undersized with respect to the load they are intended for. Discrepancy that unavoidably leads to some inefficiencies».

Motor Scan allows the remote monitoring of WEG motors, in order to maximise the use time and to allow both preventive and predictive maintenance activities

An oversized motor consumes more electric energy owing to a low power factor that increases costs. On the other hand, an undersized motor causes overheating. Therefore, it is important to monitor the motor load and to match the motor with its effective requirements, in order to improve the system performances and generate cost saving. For a certain number of years, in fact, the achievement of the energy efficiency has been the key target of industry. However, there is a concrete problem concerning the motor-load correspondence. Some energy savings must be obtained through the «right sizing». For this reason, the future evolution of Motor Scan will include the motor measuring.

Stop to vibrations, high temperatures and possible degradations of components

As already mentioned, the rise of vibrations, the high temperature and prolonged operation time of the motor can generate some risks, with undesired effects on the process where it is used. More in detail, anomalous vibrations come from electric or mechanical unbalances inside the motor. The electric causes include the variation of the flow around the stator that produces a variation of forces between the stator and the rotor, a broken rotor bar or a short circuit that involves a part of the winding. Mechanical causes include instead an unsuitable motor base and defective bearings.

«The complications caused by vibrations – points out Arosio – can for instance accelerate the bearing yielding, resulting in recesses on the tracks at the distance between balls or rollers».

Concerning temperature, some components, especially mobile parts, tend to release unusual heat quantities when they degrade. The presence of excessive heat can indicate an excess of friction, i.e. the presence of misalignments of components that rub one against the other (and they should not).

«According to some studies carried out – underlines Arosio – they estimate that each 10° rise of the operation temperature of motor windings, compared to the setup temperature, corresponds to the 50% reduction of the insulation duration of motor windings, even if the overheating is only temporary».

The effects of a protracted operation time can finally affect the fast degradation of some motor components. This occurs owing to the accumulation of overheating and stresses.

«To prolong the motor service life – notices Arosio – it is decisive, as well as important, monitoring the operation time and ascertaining that an excessive use is avoided. Moreover, the monitoring can offer the opportunity of an energy saving, permitting to switch motors off when they are not in use».

Motor Scan can be easily installed (even in a time after the motor installation) through a clamp and today it can detect vibrations, surface temperature, operation hours, speed and start/stop through a Bluetooth connection

Reducing the motor operation time by just 10%, you achieve an energy saving that exceeds the one achievable by replacing a standard efficiency one with a high-efficiency execution. In short, the effective Motor Scan device not only allows eliminating the monotonous manual collection and monitoring of data but also makes preventive maintenance suppositions superfluous and actually annuls the inefficiency of the reactive maintenance. Besides, training maintenance technicians according to the particular requisites of predictive maintenance, it offers companies the opportunity of developing the staff’s skills, widening their capabilities and competences.

Artificial intelligence for the creation of electric motors

An engineer from DNCL Technologies publicly talks about this hot topic, presenting the last novelties by the Indian company. DNCL Technologies provides Embedded Product Design and development company, DNCL offers Engineering Product Design Services and Industrial Design, Custom Electronics Product Design, IoT product Development PCB Design, Software Design included firmware and software programming services and RTOS services. «We started using an Artificial intelligence design service, and we are thrilled about the potential impacts of AI’s fusion with electric motors. We know that electric motors are a crucial part of many industrial and commercial applications and their efficient operation is essential to maintaining productivity and reducing costs. By implementing anomaly detection, condition monitoring, and predictive maintenance strategies, businesses can ensure that their motors remain in optimal condition, reducing the risk of downtime and costly repairs and extending the lifespan of their equipment».
About anomaly detection, «AI is our motor whisperer, picking up on those subtle cues we may miss. Abnormal vibrations, temperature spikes, unusual power consumption—all signs of underlying problems that left unchecked, could lead to severe damage or motor failure. Condition Monitoring is the round-the-clock guardian, keeping a watchful eye on key performance indicators like temperature, vibration, and power consumption. Machine learning models can detect those slight shifts in motor behaviour, hinting at potential issues».
Predictive Maintenance takes condition monitoring up a notch. By using advanced analytics and machine learning algorithms, AI can predict when maintenance will be needed. Imagine sensors installed in the motor system, collecting data on parameters such as vibration, temperature, current, pressure, and magnetic fields. This data is then processed and analysed to identify anomalies or patterns that could flag potential issues. Finally, by comparing historical motor performance data with real-time sensor readings, predictive maintenance systems can detect anomalies and predict when critical components may fail.

BMW patents the electric motor with opposite cylinders

The heat dissipation is a very serious problem in electric vehicles, especially referring to the temperatures of batteries and fast battery chargers. Concerning this, patent proposals by BMW concern external cooling elements, with large fins that exploit the race air to dissipate the heat transmitted to them by the elements hosted inside: motor, battery or control unit. It is a solution that might be used also as heat exchanger for some liquid-cooled elements. So, it would really be bingo: on one hand the cooling, on the other hand maintaining those two opposite cylinders that are a distinguishing element for BMW.

Impact on efficiency of core materials

Materials and efficiency

No matter whether intended for a small or big household appliance, or used to drive hybrid and/or electrical cars or, moreover, applied in industrial ambits, the electric motor goes on confirming an unprecedented global growth trend.

Challenge that involves materials

Component manufacturers, producers and end users focus on this faster and faster diffusion, orienting their commitment not only to the reduction of costs but also to the optimization of performances and to the pursuit of the highest efficiency. A challenge that directly involves also the materials that constitute the core of electric cars, from the magnetic lamination to the stator pack.

Stefano Fortunati
Stefano Fortunati, Senior Technical Manager Stainless Steel & Electrical Steel Metallurgy and Manager of the Research Unit of CSM Terni.

We talked about that with Mr. Stefano Fortunati, Senior Technical Manager, Stainless Steel & Electrical Steel Metallurgy and manager of the Research Unit of CSM Terni, with specific focus on the “white good” and automotive sectors. «For several years now – explains Mr. Fortunati – efficiency has represented a key development factor, also to comply with the regulations provided on national and international scale. For this reason, the household appliance and automotive fields, as well as others, have paid ever-rising attention to the high efficiency of electric motors for a long time».
Approach, the latter, that has motivated and determined a production shift towards higher and higher quality classes.
«Including – underlines Mr. Fortunati – the producers of magnetic laminations used for the implementation of electric motor cores».

The decreasing demand for raw materials

A context that highlights, compared to the past, a decrease of the demand for less valuable raw materials (classes with very low percentage values of Silicon or similar) and of “high” thicknesses (even 0.65 mm).
The current trend is preferring, also in the “white goods” world, lamination thicknesses included between 0.5 and 0.35 mm, and steels characterized by a higher Silicon content.  «Important aspect – underlines Mr. Fortunati – is also the higher care and the control of the crystalline microstructure, besides the choice and the selection of increasingly clean/pure steels (i.e. free from second non-metal phases)».
Actually, in fact, a low level of internal cleaning and purity, combined with a distribution of defects and second phases, increases the likelihood of constraints to the movement of magnetic domains during the magnetization. This implies a rise of losses and, therefore, an efficiency decrease.

The added-value of the magnetic permeability

«The demand coming from the market – adds Mr. Fortunati – consists then in the availability of raw materials with improved characteristics, precisely to enhance efficiency. It is undoubted that, from the point of view of the material research, this aspect represents a “driving force”. However, it is not sufficient for the attainment of the targets». It is relevant also the aspect of design and engineering change the electric motor is living. From a more general point of view, in the past the only (or anyway the main) key design parameter was represented by magnetic losses, by power losses.
«The progress and the design evolution – explains Mr. Fortunati – have led in time to recognize a higher value to the parameter of the material magnetic permeability. Material that, for applications on rotary machines, must assure an easy magnetization in isotropic manner in all directions of the plan of laminations constituting the ferromagnetic core». Concerning this, from the point of view of the material crystallography, it is necessary to grant that the (crystallographic) directions of easy magnetization are homogeneously distributed in the plan.
Relying on improved crystalline texture means enhancing the magnetic permeability to achieve higher applicative efficiency.
Given that and knowing that magnetic losses, heating and power losses occur in the core magnetization, it is important also to evaluate the necessary current intensity. Succeeding in magnetizing the conductive material optimally allows using a lower quantity of it.

Materials and efficency
Manufacturing cycles of steels for electric motors.

«Moreover, also less – adds Mr. Fortunati – is the current that passes inside windings. This means reducing losses. An approach that considers not only the magnetic lamination, i.e. the ferromagnetic material inside the core and its behaviour. But also how much conductive material and the necessary current intensity to achieve the expected result».
A sign that shows and highlights the great liveliness that is permeating the design of electric motors. Of whatever typology they are (induction, synchronous, asynchronous, reluctance motors and so on).
A further guideline in the general development of motors, for both the household appliance sector, the automotive and industry in general is oriented towards the research of thinner and thinner materials.
Worth considering, then, the material resistivity element, faced choosing materials prevailingly beneficiated with Silicon but also with Aluminium or Manganese. With a limit, because increasing the widely used Silicon with values exceeding 3.5%, the material becomes too fragile, making their industrial manufacturing and their use very critical. Then, a further strategy consisted in orienting the research towards the improvement of the material surface quality and of its cleaning.
«Differentiating elements – underlines Mr. Fortunati – that however lead to a sort of selection among the steel mills that today can grant the production in conformity with these requisites».

The best compromise between thickness and purity

Thickness and electric resistivity (due to the content of Silicon, Aluminium and Manganese) represent determinant factors in automotive ambit, because the law that rules magnetic losses includes the frequency multiplier factor. In other words, in alternate field, their contribution becomes very important in industrial and/or domestic ambit.
«Even more determinant – underlines Mr. Fortunati – in the automotive industry, where they usually deal with variable frequencies and high frequencies, with a reference factor for the lamination characterization that reaches 400 Hz».
We should consider that the best attainable materials by a conventional chain feature magnetic losses (measured at an operation induction of 1.5 Tesla – 50 Hz, with reference thickness of 0.35 mm) with values around 2 W/kg.
Referring instead to the characterization of similar materials, optimized for automotive applications (measured at 400 Hz), such value notably increases, up to 14-15 W/kg.
Therefore, the general trend is demanding and finding better and better solutions in terms of losses and crystalline textures, to improve their polarizability, i.e. the magnetic permeability. Dominant factor, the latter, to obtain a higher power density.
As already underlined, all seem oriented towards increasingly thin materials but marked out by worse mechanical properties, then with a potential more difficult applicability in some ambits.

The electric resistivity

The other aspect and conflicting factor is represented by the percentage of elements that increase the electric resistivity (first of all Silicon) contained in the material. «If on one hand – explains Mr. Fortunati – they prefer materials with high alloy content to improve losses, on the other hand this intrinsically hinders the opportunity of increasing the magnetic permeability».

Materials and efficency
Pilot line for magnetic lamination blank at CSM.

Today, then, it seems that research has chosen orienting the development of products with improved texture, possibly limiting the alloy content to grant a better magnetic permeability. And, meanwhile, acting on other awarding aspects to improve losses, such as steel cleaning, thickness and surface quality. «An improvement model, the latter, – notices Mr. Fortunati – more difficult to seize but leading in the future to products with better usability, for those working now at new motor projects and for the more and more challenging market requirements. Without forgetting that the trend towards the “ultra-thin” is not always positively judged by the manufacturers of cores and stator packs, owing to the sometimes critical necessary machining and more complex processes to be managed».

A glance at future trends

The current trend seems then to pursue the research of increasingly thin materials but we should consider right now the possible complications. It is then necessary to operate in parallel, for instance from the process point of view.
«Displacing for instance blanking – adds Mr. Fortunati – from mechanical systems towards solutions that adopt laser technologies, less affected by the thickness effect and that grant a minor degradation of the magnetic behaviour around the blanking/cutting areas. Meanwhile, we should imagine the manufacturing of super-thin laminations with a multilayer technology that can decrease the magnetic loss while facilitating their use».
Another element, anyway known for a long time, but really driving towards the smart use of these materials for applications such as household appliances but, especially in automotive ambit (where sizes and weights play a determinant role) is the stress control.

The role of stress control

When they design a motor, they tend in fact to obtain the best performances through the choice of the number of poles, number of teeth and so on, thus manufacturing a blank to implement the stator pack, even complex (with several cuts, slots and so on), compact and with very small sizes.

M
The attainment of the best efficiency of an electric motor involves several aspects. Among them, also the choice of the core materials.

«Material – adds Mr. Fortunati – that must be produced at the best possible state, without internal residual mechanical stresses that negatively influence the magnetic behaviour. It is clear that the blanking operation and, more in general, assembling processes, generate mechanical stresses and residual deformations and, actually, they deteriorate the material, with effects that become serious proportionally to the high magnetic quality of the starting material».

The use of “semi-finished” materials

The manufacturers of electric machine cores can face this aspect exploiting a stress-relieving annealing, to be carried out after the implementation of the stator pack, compacted and provided with windings.
«This process phase – explains Mr. Fortunati – is prerogative only of some companies that, instead of treating non-oriented grain material called “fully-finished”, use “semi-finished” materials. In other words, materials manufactured at lower costs and typically with relatively low percentages of Silicon, supplied not in a finished state but annealed, not decarburized and further cold-rolled, with a very low deformation level. The successive static annealing of the assembled core carried out by the user is calibrated to complete the material purification and to obtain the desired crystalline microstructure».
The analysis of this type of structure, as delivered by the steel producer, shows initial very bad magnetic specifications. Nevertheless, the stator pack producer improves the intrinsic properties through annealing (performed according to particular treatments and parameters provided for by law), which transforms the inner structure and solves the problem of residual stresses, induced by cuts and assembling operations. A process, the latter, that facilitates a calculated metallurgic process and recovers optimal magnetic characteristics. These are the peculiarities that identify “semi-finished” materials, spread especially by geographical areas.
Concerning this, Japan and United States have registered their broad diffusion for some time now, unlike what is happening in Europe. We are referring to materials that, even if considered of not excellent qualitative level, combine the advantage of a lower Silicon percentage (then better magnetic permeability), with the plus of lower cost and the solution of the criticality dictated by blanking.
«I believe that this represents an interesting field of research and development – ends Mr. Fortunati – still according to the logic of finding the best and optimal compromise able to satisfy the entire manufacturing chain, from the producer of raw materials to the motor manufacturer».

materials and efficiency
Centro Sviluppo Materiali, Terni.

Research and development activity where CSM (Centro Sviluppo Materiali) represents a qualified partner on a domestic and international scale, supporting constant innovation, process and product improvement and the attainment of higher and higher qualitative targets.

Experience and innovation at the service of materials

CSM (Centro Sviluppo Materiali) was established in 1963 as research centre of IRI in the steel industry. Today it represents the most important Italian private reality of RINA Group in the ambit of the innovation and improvement of product and process. A structure whose mission consists in developing and transferring, in industry and market at world level, the technological innovation in the strategic sector of materials and relative design, production and application technologies.
The innovation skills of CSM are based on the know-how gained in fifty years of industrial projects in metal and ceramic materials and in the integration of enabling technologies. Internet of Things, Additive Manufacturing, Big Data and Data Analytics, Augmented Reality, Collaborative Robotics and Digital Twins are some of the key words of the new context. The Centre can claim a long experience in these issues, achieved through innovation projects in the sector of materials, developed in collaboration with manufacturing companies of primary importance on a world scale.
Today CSM operates for the steel manufacturing industry and for diversified fields, such as oil and gas, aerospace, special materials and products, engineering and plant engineering, environment and energy. A strict collaboration with big, medium and small businesses, both engineering, manufacturing and service providers. All project phases, including simulations, preparations and analysis of samples and mock-ups, as well as all testing steps, take place in its own structures. Acknowledged as important pole of the European research and innovation network, CSM has always maintained a strong relation with steel partners at international level, too.
(Marcella Trapp)

A new series of fully integrated electric axles

It is called eGen Power™ and is designed to fit between the wheels of medium and heavy-duty trucks and buses, replacing the vehicle’s traditional powertrain.
We are speaking of the new series of fully integrated electric axles from Allison Transmission.
eGen Power™ is a bolt-in solution compatible and easily customizable to the current vehicle frame, suspension and wheel ends, and is well suited to most OEM vehicle assembly processes. The eGen Power series features fully integrated electric motors, a multi-speed gearbox, an oil cooler and a pump, providing industry-high performance and efficiency. The system is compatible with full battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) as well as range extending hybrid applications.
eGen Power™ includes fully electric e-Axles of the brand for medium- and heavy-duty vehicles up to 28,660 lbs. GAWR, with a multi-speed gearbox and up to 652 kW of peak power.