Monday, October 7, 2024

Microelectronics: Smart Factory project authorized by Mise

Selected by EU for the high technological impact in the ambit of the call ECSEL JU 2018, (Electronics Components and Systems for European Leadership), the project represents the bearing pillar of the European industrial strategy in the electronics field.
It is called “MADEin4”, Italian project presented by STMicroelectronics, FCA Italy, Comau, Turin Polytechnics and CNR Institute for Microelectronics and Microsystems, which aims at improving the manufacturing productivity, in conformity with the targets established by Industry 4.0 plan, by means of innovative techniques and tools that allow managing and monitoring industrial processes in real time, assuring precision and accuracy in product implementation phases.
For the implementation of this research and development project in the sector of microelectronic productions, the Minister for the Economic Development Giancarlo Giorgetti has then signed the decree that authorizes the Agreement for innovation with Lombardy and Sicily Regions.
Consequently, STMicroelectronics, FCA Italy and Comau will succeed in enhancing not only competitiveness but also efficiency of production systems in the sites of Catania, Agrate (Monza and Brianza) and Grugliasco (Turin), besides granting workers’ employment.
The agreement provides for an overall investment of over 18.7 million Euros, for which Mise allocates 5.6 million Euros in subsidized loans while about 4 million Euros derive from European funding.

Crisis of microchips, what repercussions for automotive and industry?

Everyone deemed it as official news: the shortage of semiconductors is triggering serious problems in the European and United States automotive sector, with consequent delays or even production stops in some factories, including the manufacturing lines of electric vehicles.
Moreover, it seems that in recent months costs have risen for the producers of smartphones and satisfying the demand for even common household appliances, such as refrigerators and microwave ovens, has become difficult.
Let us take a step backward: currently, microchips are fundamental components for manifold products, not only computers, smartphones and electronic devices in general, but also for automotive and the household appliance industry (which, through innovation, have added new sensors, internet connections and other “smart” functions).
The shortage started last December because, owing to the pandemic, a production slowdown and a tiring of global provisioning chains occurred, while simultaneously the demand for electronic appliances (then of microchips) increased, to overcome the forced lockdown at best.
First the automotive industry was struck and it is still the most damaged because necessary microchips are less sophisticated and expensive than those equipping appliances such as smartphones and computers, which benefit from higher margins, too.
In April, Ford shut down six factories in the United States for several weeks owing to the microchip shortage, and also General Motors, Nissan and Stellantis slowed down or interrupted the production. In the household appliance world, the President of Whirlpool in China revealed that in March the company could satisfy 90% of the demand and there is the great fear that the chip famine, with the strict gain margins, the long lifecycles of white goods and the stagnant estate market make the appliance prices soar. A great doubt shared by the automotive industry, too.

The trump card of semiconductors

The choice of semiconductors is a key factor for higher efficiency, comfort and convenience of electric vehicles. Witnessed by 3Ccar (Integrated Components for Complexity Control in affordable electrified cars), project by the Department of Information Engineering of University of Pisa in collaboration with the primary European players in the sectors of semiconductors and automotive, such as Infineon (project leader), NXP, Daimler and BMW.
The project is aimed at developing new technologies to increase electronic cars’ competitiveness on the market and to favour the growth of the electric mobility, in order to decrease polluting emissions decisively and to protect the environment, especially the urban one.
Well, recent news issued by 3Ccar: an after-sale diagnostic system in the automotive sector and technologies based on semiconductors promise a better integration of automotive systems, as well as monitoring and constant updates to avoid failures.
Exactly in line with the target of the university project, then increasing comfort and making electric cars more convenient, while paving the way to connected and automated cars.
«The project – explained Reiner John of Infineon Technologies – coordinator of 3Ccar – has studied three essential components of electric vehicles: the propulsion group, the battery and fuel cell systems and has fully redesigned them to include highly innovative semiconductors able to increase their energy efficiency, cost-effectiveness and reliability. Afterwards, it has connected these components through the functional, thermoelectric, electromechanical, electronic and nanoelectronic integration. Compared to standard battery packs, the 3Ccar system is cheaper along the whole lifecycle because embedded microcontrollers allow each cell to know its present status and to communicate with its colleagues and other car devices. If a problem occurs, the cell simply uncouples from the cluster and the car goes on running».
It is a crucial partitioning to achieve more sturdiness, user-friendliness, higher failure-proof redundancy, cost reduction and simplified maintenance, not depending on suppliers.

Interchangeable batteries? Teaming up for the electric propulsion

In the context of the Paris Agreement on Climate and of the transition towards the electric mobility, three big players have signed a Memorandum of Understanding for the establishment of a Consortium of Interchangeable Batteries for motorcycles and light electric vehicles. They are Honda, KTM, Piaggio and Yamaha Motor, convinced that a standardized system of interchangeable batteries will enhance the broad use of light electric vehicles and will share in the management of a more sustainable lifecycle management of the batteries used in the transport sector.
The goal of the Consortium, which will start its activities in May 2021, will consist in defining the standardized technical specifications of the interchangeable battery system for vehicles belonging to the “L” category; mopeds, motorcycles, tricycles and quadricycles. The 4 founder members of the Consortium, working with all concerned companies and national, European and international standardization bodies, will be involved in the definition of international technical standards.
“The global electrification effort to reduce CO2 emissions on a planetary scale – declared Noriaki Abe | Managing Officer, Motorcycle Operations, Honda Motor Co., Ltd – is in acceleration phase, especially in Europe. For the widespread adoption of electric motorcycles, problems like the transfer distance and recharge times, must be taken into account, and interchangeable batteries are a promising solution».

Driver for 30%-smaller drive systems

The last overseas news regarding the new developments of the technology for electric motors concern Texas Instruments.
The multinational has recently presented a driver for brushless DC motor (BLDC) Degree 0, highly integrated, for the drive systems of high-power 48 V motors, such as traction inverters and starter motors /generator of mild hybrid electric vehicles (MHEV). What are its outstanding peculiarities?
DRV3255-Q1 can help designers in reducing the sizes of motor systems by even 30%, providing the highest gate drive current in the sector for better protection and higher output power. Complying with the most severe safety requisites, the new motor driver has been designed according to the development process of TI functional safety certified by TÜV SÜD and shares in reaching the integrity level of ASIL D automotive safety. Further information are available on the site www.ti.com/DRV3255-q1-pr-eu.
The reduction of the board footprint is possible up to 30%: DRV3255-Q1, driver for 48-V three-phase BLDC motor integrates the active high-side and low-side short circuit logic, which eliminates external transistors and the control logic. Through the active short circuit logic integration and the dynamic response to failures, the new motor driver allows designers not only to simplify their designs but also to supply up to 30 kW of motor power, so decreasing the board footprint and the cost in bill of materials for drive systems for 48-V motor.

A solution to power motor control

Through the completion of the distribution system for MSFS motor starters for automation boards, Eaton makes available for its customers a solution to power motor control and protection circuits enriched with numerous novelties, including a 125 A power supply module, new adapters for modular and box-type switches and a 5 A /24 VDC power supply.
The distribution system has been designed to offer a safe solution for the distribution inside the automation board and it is now equipped with a 125 A power supply module, hence the nominal capacity of the bus bars of the system itself. This allows using MSFS at its highest use current, permitting its full exploitation, while the previous limit was 80 A.
The system is positioned between the base solution, constituted by three-pole bus bar blocks, and the higher-level solution characterized by SASY60i distribution bus bar system, therefore defining a new intermediate standard in terms of cost, versatility and current values for automation systems.
Eaton, in the context of the widening of MSFS system, now proposes new adapters that extend the MSFS use also to utilities not strictly connected with the motor starter. This is possible because they allow connecting to the system both modular FAZ switches up to 63 A and the box-type NZM1 switch up to 125 A.
Meanwhile, in the suitable version (ROSF), also the new hybrid EMS2 starters (Electronic Motor Starter) can be coupled to the MSFS system.
Moreover, among the novelties the system completion provides for, there is also a three-phase 5 A /24 VDC power supply that, in most of automation applications, allows powering 24 VDC auxiliary circuits of the electric equipment of a machine without providing for further power supplies. Finally, the adapters offered until now for «PKZM0/PKE + soft-starter DS7» combinations extend their use possibility also to variable-speed DE1(1) starters up to 1.5 kW.

Custom-tailored materials for metal pretreatment and functional coating

As part of its active global support for the metal coil industry, Henkel is partnering with major coil producers to implement dedicated process solutions for end applications in e-mobility. In addition, the company is also addressing demands for reducing the complexity of downstream manufacturing steps by enabling continuous upstream functional coating processes without compromising the technical properties of the coated material.
Metal coil producers play an essential role in the market of hybrid and fully electrical vehicles, supplying steel and aluminium coils to the manufacturers of batteries, transformers, converters, wound cores, shunt reactors and other key components for e-drive and electrified powertrain systems.
Henkel’s process know-how extends across the entire value chain from the rolling oil for electrical steel to specific pickling inhibitors and cleaners to specialized new functional and conductive thin coatings, such as for covering the aluminium foil used in EV battery systems. Besides providing reliable corrosion protection for painted or unpainted substrates, these products have been custom-tailored to improve the overall performance of e-mobility applications by enhancing insulation and bonding properties, magnetic permeability and electrical conductivity.
Latest product innovations targeted at both upstream and downstream metal pretreatment and functional coating for end products in e-mobility include Bonderite O-TO dedicated product range and Bonderite M-CR 12 series. Bonderite is a registered trademark of Henkel and/or its affiliates in Germany and elsewhere.

The innovation of printed circuit board stator motor

The innovation promised by Infinitum Electric, Texan start-up, concerns the stator. It is implemented in printed circuit board on plastic support instead of with conventional iron. In this solution, the copper circuit is integrated in a single printed circuit board, to reduce the energy dispersions associated to the core, thus proving to be 60% lighter, up to 10% more efficient, more compact and even 25% cheaper than a standard electric motor. Moreover, the electric unit can reduce the torque ripple, minimizing noise while used, can integrate drives in the motor and install all sensors in the printed circuit board stator.

These novelties are expected to make the motor sturdier and more durable because the stator, which contains the entire coil, can boast a thermal expansion coefficient that remains homogeneous in all points. Technologies are protected by 5 patents already registered and other 11 under certification; recently, Infinitum Electric has accomplished the funding of 12.5 million dollars to produce the new motor on a world scale.

Dynex Integrated Power Unit (IPU)

Dynex Semiconductor
Dynex Semiconductor

Dynex Semiconductor has developed a range of power inverters for automotive applications. With the units being suitable for use with both hybrid and fully electric vehicles driving multiple types of AC motor, Dynex Semiconductor inverters are of compact design with high efficiency and leading power to weight ratio.

The Features of the seminconductors of Dynex are severals. They are optimised for EV and HEV application, the bespoke IGBT power module is designed specifically for HEV/EV application, the double-sided cooling package for IGBT module increasing thermal performance and power density, there is the active gate driver technology with di/dt control. Moreover, there is wide input voltage range up to DC470V, very wide range high system efficiency, advanced and reliable motor control, selection of optimised motor control algorithms for different motor technologies, AUTOSAR compliant software development and emphasis on functional safety according to ISO26262.

DANA spicer electrified e-Axle and e-Gearbox

Two new electric drive train solutions for off-highway vehicles, including the e-Axle and e-Gearbox, are recently introduced in the market by Dana. These technologies enable electrified propulsion by leveraging the company’s portfolio of motors, inverters, and controls.

Aziz Aghili, president of Dana off-highway drive and motion technologies, said: «Vehicle manufacturers in mining, construction and other off-highway markets are efficiently transitioning toward electrification, while retaining a large portion of their products in traditional technologies. Dana has positioned the company to be energy-source agnostic to support our customers across drivetrain configurations, including electrodynamic components that accelerate the adoption of electrification through the introduction of technologies specifically selected to meet the needs of current vehicle architectures».

The Spicer Electrified e-Axle combines Dana’s heavy axle design with a high-efficiency TM4 Sumo HP motor/generator and inverter combination for medium-sized mining trucks, medium-sized load haul dumpers, and large lift trucks.

Supplying 139 kW of continuous power and 193 kW at peak power, the TM4 motor/generator and inverter join together at the center housing of the axle. So to provide the right torque and efficiency within the usual space of an internal-combustion engine and transmission.